The Geometry of Spacetime

The Geometry of Spacetime Author James J. Callahan
ISBN-10 9781475767360
Release 2013-03-09
Pages 463
Download Link Click Here

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.



The Geometry of Minkowski Spacetime

The Geometry of Minkowski Spacetime Author Gregory L. Naber
ISBN-10 9781441978387
Release 2012-02-02
Pages 324
Download Link Click Here

This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: “... a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993) “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993) “... his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)



Singularities and the geometry of space time

Singularities and the geometry of space time Author Stephen Hawking
ISBN-10 OCLC:7291436
Release 1966
Pages 172
Download Link Click Here

Singularities and the geometry of space time has been writing in one form or another for most of life. You can find so many inspiration from Singularities and the geometry of space time also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Singularities and the geometry of space time book for free.



Spacetime Geometry and Gravitation

Spacetime  Geometry and Gravitation Author Pankaj Sharan
ISBN-10 9783764399702
Release 2009-09-18
Pages 355
Download Link Click Here

This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.



Spacetime and Geometry

Spacetime and Geometry Author Sean Carroll
ISBN-10 1292026634
Release 2013-08
Pages 513
Download Link Click Here

Spacetime and Geometry: An Introduction to General Relativity provides a lucid and thoroughly modern introduction to general relativity for advanced undergraduates and graduate students. It introduces modern techniques and an accessible and lively writing style to what can often be a formal and intimidating subject. Readers are led from physics of flat spacetime (special relativity), through the intricacies of differential geometry and Einstein's equations, and on to exciting applications such as black holes, gravitational radiation, and cosmology. Subtle points are illuminated throughout the text by careful and entertaining exposition. A straightforward and lucid approach, balancing mathematical rigor and physical insight, are hallmarks of this important text.



Spacetime

Spacetime Author Marcus Kriele
ISBN-10 9783540483540
Release 2003-07-01
Pages 436
Download Link Click Here

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.



Differential Geometry and Relativity Theory

Differential Geometry and Relativity Theory Author Richard L. Faber
ISBN-10 082471749X
Release 1983-05-26
Pages 272
Download Link Click Here

Differential Geometry and Relativity Theory has been writing in one form or another for most of life. You can find so many inspiration from Differential Geometry and Relativity Theory also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Differential Geometry and Relativity Theory book for free.



Space Time and Spacetime

Space  Time  and Spacetime Author Lawrence Sklar
ISBN-10 0520031741
Release 1977-01-01
Pages 423
Download Link Click Here

In this book, Lawrence Sklar demonstrates the interdependence of science and philosophy by examining a number of crucial problems on the nature of space and time--problems that require for their resolution the resources of philosophy and of physics. The overall issues explored are our knowledge of the geometry of the world, the existence of spacetime as an entity over and above the material objects of the world, the relation between temporal order and causal order, and the problem of the direction of time. Without neglecting the most subtle philosophical points or the most advanced contributions of contemporary physics, the author has taken pains to make his explorations intelligible to the reader with no advanced training in physics, mathematics, or philosophy. The arguments are set forth step-by-step, beginning from first principles; and the philosophical discussions are supplemented in detail by nontechnical expositions of crucial features of physical theories.



Quantization Geometry and Noncommutative Structures in Mathematics and Physics

Quantization  Geometry and Noncommutative Structures in Mathematics and Physics Author Alexander Cardona
ISBN-10 9783319654270
Release 2017-10-26
Pages 341
Download Link Click Here

This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.



Relativity

Relativity Author Steve Adams
ISBN-10 0203018605
Release 2003-09-02
Pages 280
Download Link Click Here

Provides the essential principles and results of special relativity as required by undergraduates. The text uses a geometric interpretation of space-time so that a general theory is seen as a natural extension of the special theory. Although most results are derived from first principles, complex and distracting mathematics is avoided and all mathematical steps and formulae are fully explained and interpreted, often with explanatory diagrams.; The emphasis throughout the text is on understanding the physics of relativity. The structure of the book is designed to allow students of different courses to choose their own route through the short self-contained sections in each chapter. The latter part of the book shows how Einstein's theory of gravity is central to unraveling fundamental questions of cosmology.



Gravitation and Spacetime

Gravitation and Spacetime Author Hans C. Ohanian
ISBN-10 9781107012943
Release 2013-04-08
Pages 528
Download Link Click Here

This text provides a quantitative introduction to general relativity for advanced undergraduate and graduate students.



Minkowski Geometry

Minkowski Geometry Author A. C. Thompson
ISBN-10 052140472X
Release 1996-06-28
Pages 346
Download Link Click Here

This is a comprehensive treatment of Minkowski geometry. The author begins by describing the fundamental metric properties and the topological properties of existence of Minkowski space. This is followed by a treatment of two-dimensional spaces and characterizations of Euclidean space among normed spaces. The central three chapters present the theory of area and volume in normed spaces--a fascinating geometrical interplay among the various roles of the ball in Euclidean space. Later chapters deal with trigonometry and differential geometry in Minkowski spaces. The book ends with a brief look at J. J. Schaffer's ideas on the intrinsic geometry of the unit sphere.



Springer Handbook of Spacetime

Springer Handbook of Spacetime Author Abhay Ashtekar
ISBN-10 9783642419928
Release 2014-09-01
Pages 950
Download Link Click Here

The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.



Space Time and the Limits of Human Understanding

Space  Time and the Limits of Human Understanding Author Shyam Wuppuluri
ISBN-10 9783319444185
Release 2016-12-01
Pages 530
Download Link Click Here

In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of space and time, computer scientists theoretically and practically try to optimize the space-time complexities in storing and retrieving data/information. The list is never-ending. Linguists, logicians, artists, evolutionary biologists, geographers etc., all are trying to weave a web of understanding around the same duo. However, our endeavour into a world of such endless imagination is restrained by intellectual dilemmas such as: Can humans comprehend everything? Are there any limits? Can finite thought fathom infinity? We have sought far and wide among the best minds to furnish articles that provide an overview of the above topics. We hope that, through this journey, a symphony of patterns and tapestry of intuitions will emerge, providing the reader with insights into the questions: What is Space? What is Time? Chapter [15] of this book is available open access under a CC BY 4.0 license.



Objective Becoming

Objective Becoming Author Bradford Skow
ISBN-10 9780198713272
Release 2015
Pages 249
Download Link Click Here

Examines theories of time that are based on metaphor, especially the moving spotlight theory which holds that "presentness" moves along the series of times from the past into the future, and proposes ways in which the moving spotlight theory may be made compatible with the theory of relativity.



Spacetime and Singularities

Spacetime and Singularities Author Gregory L. Naber
ISBN-10 0521336120
Release 1988
Pages 178
Download Link Click Here

Naber provides an elementary introduction to the geometrical methods and notions used in special and general relativity. Particular emphasis is placed on the ideas concerned with the structure of space-time and that play a role in the Penrose-Hawking singularity theorems. The author's primary purpose is to give a rigorous proof of the simplest of these theorems, by the one that is representative of the whole. He provides exercises and examples at the end of each chapter. No previous exposure either to relativity theory of differential geometry is required of the reader, as necessary concepts are developed when needed, though some restrictions ae imposed on the types of space considered.



Orthogonality and Spacetime Geometry

Orthogonality and Spacetime Geometry Author Robert Goldblatt
ISBN-10 9781468463453
Release 2012-12-06
Pages 194
Download Link Click Here

This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma trix represent ability of certain projective transformations (involu tions, polarities). I have tried to make the work sufficiently self contained that it may be used as the basis for a course at the ad vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.